
gmp
Ruby bindings to the GMP library

Edition 0.7.19
12 March 2014

written by Sam Rawlins
with extensive quoting from the GMP Manual

1

This manual describes how to use the gmp Ruby gem, which provides bindings to the GNU mul-
tiple precision arithmetic library, version 4.3.x or 5.x.

Copyright 2009, 2010, 2011, 2012, 2013 Sam Rawlins.
Apache License, Version 2.0

2

Contents

1 Introduction to GNU MP 5

2 Introduction to MPFR 6

3 Introduction to the gmp gem 7

4 Installing the gmp gem 7
4.1 Prerequisites . 7
4.2 Installing . 9

5 Testing the gmp gem 10

6 GMP and gmp gem basics 10
6.1 Classes . 10

7 MPFR basics 11

8 Integer Functions 12
8.1 Initializing, Assigning Integers . 12
8.2 Converting Integers . 12
8.3 Integer Arithmetic . 13
8.4 Integer Division . 15
8.5 Integer Exponentiation . 17
8.6 Integer Roots . 17
8.7 Number Theoretic Functions . 18
8.8 Integer Comparisons . 19
8.9 Integer Logic and Bit Fiddling . 20
8.10 Miscellaneous Integer Functions . 22
8.11 Integer Special Functions . 22

9 Rational Functions 23
9.1 Initializing, Assigning Rationals . 23
9.2 Converting Rationals . 23
9.3 Rational Arithmetic . 23

10 Floating-point Functions 24
10.1 Initializing, Assigning Floats . 24
10.2 Floating-point Conversion Functions . 25
10.3 Floating-point Special Functions (MPFR Only) 25

11 Random Number Functions 28
11.1 Random State Initialization . 28
11.2 Random State Seeding . 28
11.3 Integer Random Numbers . 28
11.4 Floating-Point Random Numbers (MPFR only) 29
11.5 Floating-point Miscellaneous Functions (MPFR only) 29

3

12 Benchmarking 30

4

1 Introduction to GNU MP

This entire page is copied verbatim from the GMP Manual.

GNU MP is a portable library written in C for arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. It aims to provide the fastest possible arithmetic for all
applications that need higher precision than is directly supported by the basic C types.

Many applications use just a few hundred bits of precision; but some applications may need thou-
sands or even millions of bits. GMP is designed to give good performance for both, by choosing
algorithms based on the sizes of the operands, and by carefully keeping the overhead at a minimum.

The speed of GMP is achieved by using fullwords as the basic arithmetic type, by using sophis-
ticated algorithms, by including carefully optimized assembly code for the most common inner
loops for many different CPUs, and by a general emphasis on speed (as opposed to simplicity or
elegance).

There is assembly code for these CPUs: ARM, DEC Alpha 21064, 21164, and 21264, AMD 29000,
AMD K6, K6-2, Athlon, and Athlon64, Hitachi SuperH and SH-2, HPPA 1.0, 1.1, and 2.0, In-
tel Pentium, Pentium Pro/II/III, Pentium 4, generic x86, Intel IA-64, i960, Motorola MC68000,
MC68020, MC88100, and MC88110, Motorola/IBM PowerPC 32 and 64, National NS32000, IBM
POWER, MIPS R3000, R4000, SPARCv7, SuperSPARC, generic SPARCv8, UltraSPARC, DEC
VAX, and Zilog Z8000. Some optimizations also for Cray vector systems, Clipper, IBM ROMP
(RT), and Pyramid AP/XP.

For up-to-date information on GMP, please see the GMP web pages at http://gmplib.org/

The latest version of the library is available at ftp://ftp.gnu.org/gnu/gmp/

Many sites around the world mirror ’ftp.gnu.org’, please use a mirror near you, see http:

//www.gnu.org/order/ftp.html for a full list.

There are three public mailing lists of interest. One for release announcements, one for general
questions and discussions about usage of the GMP library, and one for bug reports. For more
information, see http://gmplib.org/mailman/listinfo/.

The proper place for bug reports is gmp-bugs@gmplib.org. See Chapter 4 [Reporting Bugs], page
28 for information about reporting bugs.

5

2 Introduction to MPFR

The gmp gem optionally interacts with the MPFR library as well. This entire page is copied ver-
batim from the MPFR manual.

The MPFR library is a C library for multiple-precision floating-point computations with correct
rounding. MPFR has continuously been supported by the INRIA and the current main authors
come from the Caramel and Arnaire project-teams at Loria (Nancy, France) and LIP (Lyon,
France) respectively; see more on the credit page. MPFR is based on the GMP multiple-precision
library.

The main goal of MPFR is to provide a library for multiple-precision floating-point computa-
tion which is both efficient and has a well-defined semantics. It copies the good ideas from the
ANSI/IEEE-754 standard for double-precision floating-point arithmetic (53-bit mantissa).

MPFR is free. It is distributed under the GNU Lesser General Public License (GNU Lesser GPL),
version 3 or later (2.1 or later for MPFR versions until 2.4.x). The library has been registered in
France by the Agence de Protection des Programmes under the number IDDN FR 001 120020 00
R P 2000 000 10800, on 15 March 2000. This license guarantees your freedom to share and change
MPFR, to make sure MPFR is free for all its users. Unlike the ordinary General Public License,
the Lesser GPL enables developers of non-free programs to use MPFR in their programs. If you
have written a new function for MPFR or improved an existing one, please share your work!

6

3 Introduction to the gmp gem

The gmp Ruby gem is a Ruby library that provides bindings to GMP. The gem is incomplete,
and will likely only include a subset of the GMP functions. It is built as a C extension for Ruby,
interacting with gmp.h. The gmp gem is not endorsed or supported by GNU or the GMP team
(or MPFR team). The gmp gem also does not ship with GMP (or MPFR), so GMP (and MPFR)
must be compiled separately.

4 Installing the gmp gem

4.1 Prerequisites

OK. First, we’ve got a few requirements. To install the gmp gem, you need one of the following
versions of Ruby:

• (MRI) Ruby 1.8.6 - tested lightly.

• (MRI) Ruby 1.8.7 - tested lightly.

• (MRI) Ruby 1.9.3 - tested seriously.

• (MRI) Ruby 2.0.0 - tested seriously.

• (REE) Ruby 1.8.7 - tested lightly.

• (RBX) Rubinius 1.1 - tested lightly.

As you can see only Matz’s Ruby Interpreter (MRI) is seriously supported. I’ve just started to
poke around with REE. Everything seems to work on REE 1.8.7 on Linux, x86 and x86 64. Also,
Rubinius 1.1 seems to work great on Linux, but support won’t be official until Rubinius 1.1.1.

Next is the platform, the combination of the architecture (processor) and OS. As far as I can tell,
if you can compile GMP and Ruby (and optionally MPFR) on a given platform, you can use the
gmp gem there too. Please report problems with that hypothesis.

Lastly, GMP (and MPFR). GMP (and MPFR) must be compiled and working. ”And working”
means you ran ”make check” after compiling GMP (and MPFR), and it ’check’s out. The following
versions of GMP (and MPFR) have been tested:

• GMP 4.3.1 (with MPFR 2.4.2)

• GMP 4.3.2 (with MPFR 2.4.2 and 3.0.0)

• GMP 5.0.0 (with MPFR 3.0.0)

• GMP 5.0.1 (with MPFR 3.0.0)

That’s all. I don’t intend to test any older versions.

7

Here is a table of the exact environments on which I have tested the gmp gem. The (MPFR)
version denotes that the gmp gem was tested both with and without the given version of MPFR:

Platform Ruby GMP (MPFR)

Linux (Ubuntu NR 10.04) on x86 (32-bit) (MRI) Ruby 1.8.7 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.8.7 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.1 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.1 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.2 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.2 GMP 5.0.1 (3.0.0)

(RBX) Rubinius 1.1 GMP 4.3.2 (2.4.2)
(RBX) Rubinius 1.1 GMP 5.0.1 (3.0.0)

Linux (Ubuntu 10.04) on x86 64 (64-bit) (MRI) Ruby 1.8.7 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.8.7 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.1 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.1 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.2 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.2 GMP 5.0.1 (3.0.0)

(RBX) Rubinius 1.1 GMP 4.3.2 (2.4.2)
(RBX) Rubinius 1.1 GMP 5.0.1 (3.0.0)

Mac OS X 10.6.4 on x86 64 (64-bit) (MRI) Ruby 1.8.7 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.8.7 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.1 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.1 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.2 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.2 GMP 5.0.1 (3.0.0)

(RBX) Rubinius 1.1 GMP 4.3.2 (2.4.2)
(RBX) Rubinius 1.1 GMP 5.0.1 (3.0.0)

Windows 7 on x86 64 (64-bit) (MRI) Ruby 1.8.7 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.8.7 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.1 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.1 GMP 5.0.1 (3.0.0)
(MRI) Ruby 1.9.2 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.2 GMP 5.0.1 (3.0.0)

Windows XP on x86 (32-bit) (MRI) Ruby 1.9.1 GMP 4.3.2 (2.4.2)
(MRI) Ruby 1.9.1 GMP 5.0.1 (3.0.0)

8

In addition, I used to test on the following environments, in versions 0.4.7 and earlier of the gmp
gem:

Platform Ruby GMP

Cygwin on x86 (MRI) Ruby 1.8.7 GMP 4.3.1
Linux (LinuxMint 7) on x86 (MRI) Ruby 1.8.7 GMP 4.3.1
Mac OS X 10.5.7 on x86 (32-bit) (MRI) Ruby 1.8.6 GMP 4.3.1
Mac OS X 10.5.7 on x86 (32-bit) (MRI) Ruby 1.9.1 GMP 4.3.1

4.2 Installing

You may clone the gmp gem’s git repository with:

git clone git://github.com/srawlins/gmp.git

Or you may install the gem from gemcutter (rubygems.org):

gem install gmp

9

At this time, the gem self-compiles. If required libraries cannot be found, you may compile the C
extensions manually with:

cd <gmp gem directory>/ext

ruby extconf.rb

make

There shouldn’t be any errors, or warnings.

5 Testing the gmp gem

Testing the gmp gem is quite simple. The test/unit tests.rb suite uses Unit::Test. You can run
this test suite with:

cd <gmp gem directory>/test

ruby unit tests.rb

All tests should pass. If you don’t have the test-unit gem installed, then you may run into one
error. It would look like:

1) Error:

test z div(TC division):

TypeError: GMP::Q can’t be coerced into Float

C:/Ruby191/devkit/msys/1.0.11/projects/gmp gem/test/tc division.rb:18:in ‘test z div’

6 GMP and gmp gem basics

6.1 Classes

The gmp gem includes the namespace GMP and four classes within GMP:

• GMP::Z - Methods for signed integer arithmetic. There are about 64 methods here.

• GMP::Q - Methods for rational number arithmetic. There are at least 11 methods here (still
accounting).

• GMP::F - Methods for floating-point arithmetic. There are at least 6 methods here (still
accounting).

• GMP::RandState - Methods for random number generation. There are 3 methods here.

In addition to the above four classes, there are also four constants within GMP:

• GMP::GMP VERSION - The version of GMP linked into the gmp gem

• GMP::GMP CC - The compiler that compiled GMP linked into the gmp gem

• GMP::GMP CFLAGS - The compiler flags used to compile GMP linked into the gmp gem

• GMP::GMP BITS PER LIMB - The number of bits per limb

• GMP::GMP NUMB MAX - The maximum value that can be stored in the number part of a limb.

10

7 MPFR basics

The gmp gem can optionally link to MPFR, the Multiple Precision Floating-Point Reliable Library.
The x86-mswin32 version of the gmp gem comes with MPFR. This library uses the floating-point
type from GMP, and thus the MPFR functions mapped in the gmp gem become methods in
GMP::F.
There are additional constants within GMP when MPFR is linked:

• GMP::MPFR VERSION - The version of MPFR linked into the gmp gem.

• GMP::MPFR PREC MIN - The minimum precision available.

• GMP::MPFR PREC MAX - The maximum precision available

• GMP::GMP RNDN - Rounding mode representing ”round to nearest.”

• GMP::GMP RNDZ - Rounding mode representing ”round toward zero.”

• GMP::GMP RNDU - Rounding mode representing ”round toward positive infinity.”

• GMP::GMP RNDD - Rounding mode representing ”round toward negative infinity.”

• GMP::MPFR RNDN - Rounding mode representing ”round to nearest.”
(MPFR version 3.0.0 or higher only)

• GMP::MPFR RNDZ - Rounding mode representing ”round toward zero.”
(MPFR version 3.0.0 or higher only)

• GMP::MPFR RNDU - Rounding mode representing ”round toward positive infinity.”
(MPFR version 3.0.0 or higher only)

• GMP::MPFR RNDD - Rounding mode representing ”round toward negative infinity.”
(MPFR version 3.0.0 or higher only)

• GMP::MPFR RNDZ - Rounding mode representing ”round away from zero.”
(MPFR version 3.0.0 or higher only)

11

8 Integer Functions

8.1 Initializing, Assigning Integers

new GMP::Z.new → integer
GMP::Z.new(numeric = 0) → integer
GMP::Z.new(str, base = 0) → integer

This method creates a new GMP::Z integer. It typically takes one optional
argument for the value of the integer. This argument can be one of several
classes. If the first argument is a String, then a second argument, the base, may
be optionally supplied. Here are some examples:

GMP::Z.new #=> 0 (default)

GMP::Z.new(1) #=> 1 (Ruby Fixnum)

GMP::Z.new("127") #=> 127 (Ruby String)

GMP::Z.new("FF", 16) #=> 255 (Ruby String with base)

GMP::Z.new("1Z", 36) #=> 71 (Ruby String with base)

GMP::Z.new(4294967296) #=> 4294967296 (Ruby Bignum)

GMP::Z.new(GMP::Z.new(31)) #=> 31 (GMP Integer)

There is also a convenience method available, GMP::Z().

8.2 Converting Integers

to d integer.to d → float

Returns integer as an Float if integer fits in a Float.
Otherwise returns the least significant part of integer, with the same sign as
integer.
If integer is too big to fit in a Float, the returned result is probably not
very useful. To find out if the value will fit, use the function mpz fits slong p
(Unimplemented).

to i integer.to i → fixnum

Returns integer as a Fixnum if integer fits in a Fixnum.

Otherwise returns the least significant part of integer, with the same sign as
integer.

If integer is too big to fit in a Fixnum, the returned result is probably not
very useful. To find out if the value will fit, use the function mpz fits slong p
(Unimplemented).

12

to s integer.to s(base = 10) → str

Converts integer to a string of digits in base base. The base argument may vary
from 2 to 62 or from -2 to -36, or be a symbol, one of :bin, :oct, :dec, or :hex.

For base in the range 2..36, digits and lower-case letters are used; for -2..-36
(and :bin, :oct, :dec, and :hex), digits and upper-case letters are used; for 37..62,
digits, upper-case letters, and lower-case letters (in that significance order) are
used. Here are some examples:

GMP::Z(1).to s #=> "1"

GMP::Z(32).to s(2) #=> "100000"

GMP::Z(32).to s(4) #=> "200"

GMP::Z(10).to s(16) #=> "a"

GMP::Z(10).to s(-16) #=> "A"

GMP::Z(255).to s(:bin) #=> "11111111"

GMP::Z(255).to s(:oct) #=> "377"

GMP::Z(255).to s(:dec) #=> "255"

GMP::Z(255).to s(:hex) #=> "ff"

8.3 Integer Arithmetic

+ integer + numeric → numeric

Returns the sum of integer and numeric. numeric can be an instance of GMP::Z,
Fixnum, GMP::Q, GMP::F, or Bignum.

add! integer.add!(numeric) → numeric

Sums integer and numeric, in place. numeric can be an instance of GMP::Z,
Fixnum, GMP::Q, GMP::F, or Bignum.

13

- integer - numeric → numeric
integer.sub!(numeric) → numeric

Returns the difference of integer and numeric. The destructive method calculates
the difference in place. numeric can be an instance of GMP::Z, Fixnum, GMP::Q,
GMP::F, or Bignum. Here are some examples:

seven = GMP::Z(7)

nine = GMP::Z(9)

half = GMP::Q(1,2)

pi = GMP::F("3.14")

nine - 5 #=> 4 (GMP Integer)

nine - seven #=> 2 (GMP Integer)

nine - (2**32) #=> -4294967287 (GMP Integer)

nine - nine #=> 0 (GMP Integer)

nine - half #=> 8.5 (GMP Rational)

nine - pi #=> 5.86 (GMP Float)

* integer * numeric → numeric
integer.mul(numeric) → numeric

integer.mul!(numeric) → numeric

Returns the product of integer and numeric. The destructive method calculates
the product in place. numeric can be an instance of GMP::Z, Fixnum, GMP::Q,
GMP::F, or Bignum.

addmul! integer.addmul!(b, c) → numeric

Sets integer to the sum of integer and the product of b and c. This destructive
method calculates the result in place. Both b and c can be an instance of GMP::Z,
Fixnum, or Bignum.

submul! integer.submul!(b, c) → numeric

Sets integer to the difference of integer and the product of b and c. This destruc-
tive method calculates the result in place. Both b and c can be an instance of
GMP::Z, Fixnum, or Bignum.

<< integer <<numeric → integer

Returns integer times 2 to the numeric power. This can also be defined as a left
shift by numeric bits.

14

-@ -integer
integer.neg

integer.neg!

Returns the negation, the additive inverse, of integer. The destructive method
negates in place.

abs integer.abs
integer.abs!

Returns the absolute value of integer. The destructive method calculates the
absolute value in place.

8.4 Integer Division

tdiv integer.tdiv(numeric) → integer

Returns the division of integer by numeric, truncated. numeric can be an in-
stance of GMP::Z, Fixnum, Bignum. The return object’s class is always GMP::Z.

fdiv integer.fdiv(numeric) → integer

Returns the division of integer by numeric, floored. numeric can be an instance
of GMP::Z, Fixnum, Bignum. The return object’s class is always GMP::Z.

cdiv integer.cdiv(numeric) → integer

Returns the ceiling division of integer by numeric. numeric can be an instance
of GMP::Z, Fixnum, Bignum. The return object’s class is always GMP::Z.

tmod integer.tmod(numeric) → integer

Returns the remainder after truncated division of integer by numeric. numeric
can be an instance of GMP::Z, Fixnum, or Bignum. The return object’s class
is always GMP::Z.

fmod integer.fmod(numeric) → integer

Returns the remainder after floored division of integer by numeric. numeric can
be an instance of GMP::Z, Fixnum, or Bignum. The return object’s class is
always GMP::Z.

cmod integer.cmod(numeric) → integer

Returns the remainder after ceilinged division of integer by numeric. numeric
can be an instance of GMP::Z, Fixnum, or Bignum. The return object’s class
is always GMP::Z.

15

% integer % numeric → integer

Returns integer modulo numeric. numeric can be an instance of GMP::Z,
Fixnum, or Bignum. The return object’s class is always GMP::Z.

divisible? integer.divisible? numeric → boolean

Returns whether integer is divisible by numeric. numeric can be an instance of
GMP::Z, Fixnum, or Bignum.

16

8.5 Integer Exponentiation

** integer ** numeric → numeric
integer.pow(numeric) → numeric

GMP::Z.pow(integer, numeric) → numeric

Returns integer raised to the numeric power. In the singleton method
(GMP::Z.pow()), integer can be either a GMP::Z, Fixnum, Bignum, or String.

powmod integer.powmod(exp, mod) → integer

Returns integer raised to the exp power, modulo mod. Negative exp is supported
if an inverse, integer−1 modulo mod, exists. If an inverse doesn’t exist then a
divide by zero exception is raised.

8.6 Integer Roots

root integer.root(numeric) → numeric

Returns the integer part of the numeric’th root of integer.

sqrt integer.sqrt → numeric
integer.sqrt! → numeric

Returns the truncated integer part of the square root of integer.

sqrtrem integer.sqrtrem → sqrt, rem

Returns the truncated integer part of the square root of integer as sqrt and the
remainder, integer− sqrt∗ sqrt, as rem, which will be zero if integer is a perfect
square.

power? integer.power? → true | false

Returns true if integer is a perfect power, i.e., if there exist integers a and b,
with b > 1, such that integer equals a raised to the power b.

Under this definition both 0 and 1 are considered to be perfect powers.
Negative values of integers are accepted, but of course can only be odd perfect
powers.

square? integer.square? → true | false

Returns true if integer is a perfect square, i.e., if the square root of integer is an
integer. Under this definition both 0 and 1 are considered to be perfect squares.

17

8.7 Number Theoretic Functions

probab prime? integer.probab prime?(reps = 5) → 0, 1, or 2

Determine whether integer is prime. Returns 2 if integer is definitely prime,
returns 1 if integer is probably prime (without being certain), or returns 0 if
integer is definitely composite.

This function does some trial divisions, then some Miller-Rabin probabilis-
tic primality tests. reps controls how many such tests are done, 5 to 10 is a
reasonable number, more will reduce the chances of a composite being returned
as probably prime.

Miller-Rabin and similar tests can be more properly called compositeness
tests. Numbers which fail are known to be composite but those which pass might
be prime or might be composite. Only a few composites pass, hence those which
pass are considered probably prime.

next prime integer.next prime → prime
integer.nextprime → prime

integer.next prime! → prime
integer.nextprime! → prime

Returns the next prime greater than integer. The destructive method sets
integer to the next prime greater than integer.

This function uses a probabilistic algorithm to identify primes. For practi-
cal purposes it’s adequate, the chance of a composite passing will be extremely
small.

gcd a.gcd(b) → g

Computes the greatest common divisor of a and b. g will always be positive,
even if a or b is negative. b can be an instance of GMP::Z, Fixnum, or Bignum.

GMP::Z(24).gcd(GMP::Z(8)) #=> GMP::Z(8)

GMP::Z(24).gcd(8) #=> GMP::Z(8)

GMP::Z(24).gcd(2**32) #=> GMP::Z(8)

gcdext a.gcd(b) → g, s, t

Computes the greatest common divisor of a and b, in addition to s and t, the
coefficients satisfying a ∗ s + b ∗ t = g. g will always be positive, even if a or b
is negative. s and t are chosen such that |s| <= |b| and |t| <= |a|. b can be an
instance of GMP::Z, Fixnum, or Bignum.

18

invert a.invert(m) → integer

Computes the inverse of a mod m. m can be an instance of GMP::Z, Fixnum,
or Bignum.

GMP::Z(2).invert(GMP::Z(11)) #=> GMP::Z(6)

GMP::Z(3).invert(11) #=> GMP::Z(4)

GMP::Z(5).invert(11) #=> GMP::Z(9)

jacobi a.jacobi(b) → integer
GMP::Z.jacobi(a, b) → integer

Returns the Jacobi symbol (a/b). This is defined only for b odd. If b is even, a
range exception will be raised.

GMP::Z.jacobi (the instance method) requires b to be an instance of GMP::Z.
GMP::Z#jacobi (the class method) requires a and b each to be an instance of
GMP::Z, Fixnum, or Bignum.

legendre a.legendre(b) → integer

Returns the Legendre symbol (a/b). This is defined only for p an odd positive
prime. If p is even, negative, or composite, a range exception will be raised.

remove n.remove(factor) → (integer, times)

Remove all occurrences of the factor factor from n. factor can be an instance
of GMP::Z, Fixnum, or Bignum. integer is the resulting integer, an instance of
GMP::Z. times is how many times factor was removed, a Fixnum.

fac GMP::Z.fac(n) → integer

Returns n!, or, n factorial.

fib GMP::Z.fib(n) → integer

Returns F [n], the nth Fibonacci number.

fib2 GMP::Z.fib2(n) → integer

Returns F [n] and F [n− 1], the nth and n− 1th Fibonacci numbers.

8.8 Integer Comparisons

<=> a <=> b → fixnum

Returns a negative Fixnum if a is less than b.
Returns 0 if a is equal to b.
Returns a positive Fixnum if a is greater than b.

19

< a < b → boolean

Returns true if a is less than b.

<= a <= b → boolean

Returns true if a is less than or equal to b.

== a == b → boolean

Returns true if a is equal to b.

>= a >= b → boolean

Returns true if a is greater than or equal to b.

> a > b → boolean

Returns true if a is greater than b.

cmpabs a.cmpabs(b) → fixnum

Returns a negative Fixnum if abs(a) is less than abs(b).
Returns 0 if abs(a) is equal to abs(b).
Returns a positive Fixnum if abs(a) is greater than abs(b).

sgn a.sgn → −1, 0, or 1

Returns -1 if a is less than b.
Returns 0 if a is equal to b.
Returns 1 if a is greater than b.

eql? a.eql?(b) → boolean

Used when comparing objects as Hash keys.

hash a.hash → string

Used when comparing objects as Hash keys.

8.9 Integer Logic and Bit Fiddling

and a & b → integer

Returns integer, the bitwise and of a and b.

ior a | b → integer

Returns integer, the bitwise inclusive or of a and b.

20

xor a ˆ b → integer

Returns integer, the bitwise exclusive or of a and b.

com integer.com → complement
integer.com! → complement

Returns the one’s complement of integer. The destructive method sets integer
to the one’s complement of integer.

popcount n.popcount → fixnum

If n >= 0, return the population count of n, which is the number of 1 bits in the
binary representation. If n < 0, the number of 1s is infinite, and the return value
is the largest possible mp bitcnt t.

scan0 n.scan0(i) → integer

Scans n, starting from bit i, towards more significant bits, until the first 0 bit is
found. Return the index of the found bit.

If the bit at i is already what’s sought, then i is returned.

If there’s no bit found, then INT2FIX(ULONG MAX) is returned. This will
happen in scan0 past the end of a negative number.

scan1 n.scan1(i) → integer

Scans n, starting from bit i, towards more significant bits, until the first 1 bit is
found. Return the index of the found bit.

If the bit at i is already what’s sought, then i is returned.

If there’s no bit found, then INT2FIX(ULONG MAX) is returned. This will
happen in scan1 past the end of a negative number.

[] n[bit index] → 0 or 1

Tests bit bit index in n and return 0 or 1 accordingly.

[]= n[bit index]=i → nil

Sets bit bit index in n to i.

21

8.10 Miscellaneous Integer Functions

odd? n.odd? → boolean

Returns whether n is odd.

even? n.even? → boolean

Returns whether n is even.

sizeinbase n.sizeinbase(b) → digits

Returns the number of digits in base b. b can vary between 2 and 62.

size in bin n.size in bin → digits

Returns the number of digits in n’s binary representation.

8.11 Integer Special Functions

size integer.size → fixnum

Returns the size of integer measured in number of limbs. If integer is zero, then
the returned value will be zero.

22

9 Rational Functions

9.1 Initializing, Assigning Rationals

new GMP::Q.new → rational
GMP::Q.new(numerator = 0, denominator = 1) → rational

GMP::Q.new(str) → rational

This method creates a new GMP::Qrational number. It takes two optional
arguments for the value of the numerator and denominator. These arguments
can each be an instance of several classes. Here are some examples:

GMP::Q.new #=> 0 (default)

GMP::Q.new(1) #=> 1 (Ruby Fixnum)

GMP::Q.new(1,3) #=> 1/3 (Ruby Fixnums)

GMP::Q.new("127") #=> 127 (Ruby String)

GMP::Q.new(4294967296) #=> 4294967296 (Ruby Bignum)

GMP::Q.new(GMP::Z.new(31)) #=> 31 (GMP Integer)

There is also a convenience method available, GMP::Q().

9.2 Converting Rationals

to d rational.to d → float

Returns rational as an Float if rational fits in a Float.
Otherwise returns the least significant part of rational, with the same sign as
rational.
If rational is too big to fit in a Float, the returned result is probably not very
useful.

to s rational.to s → str

Converts rational to a string.

9.3 Rational Arithmetic

+ rational + numeric → numeric

23

10 Floating-point Functions

10.1 Initializing, Assigning Floats

new GMP::F.new → float
GMP::F.new(numeric, precision = default, rnd mode = GMP RNDN) → float

GMP::F.new(str, base = 0) → float

This method creates a new GMP::F float. It typically takes one optional
argument for the value of the float. This argument can be one of several classes.
Optionally, a precision can be passed.

If MPFR is available, an optional rounding mode can also be passed.

If the first argument is a String, then a second argument, the base, may be
optionally supplied. Here are some examples:

GMP::F.new #=> 0 (default)

GMP::F.new(5) #=> 5 (Ruby Fixnum)

GMP::F.new(GMP::Z.new(31)) #=> 31 (GMP Integer)

GMP::F.new(3**41) #=> 0.36472996377170788e+20

> (Ruby Bignum)

GMP::F.new(3**41, 32) #=> 0.36472996375+20

> (Ruby Bignum with precision)

GMP::F.new(3**41, 32, GMP::GMP RNDU) #=> 0.36472996375+20

> (Ruby Bignum with precision and a rounding mode)

GMP::F.new("20") #=> 20 (Ruby String)

GMP::F.new("0x20") #=> 32 (Ruby hexadecimal-format String)

GMP::F.new("111", 16) #=> 111 (Ruby String with precision)

GMP::F.new("111", 16, 2) #=> 7

> (Ruby String with precision and a base)

There is also a convenience method available, GMP::F().

nan (MPFR only) GMP::F.nan → NaN

Returns NaN, an instance of GMP::F .

inf (MPFR only) GMP::F.inf(sign = 1) → Inf

Returns Inf (positive infinity) or -Inf (negative infinity), an instance of GMP::F
, based on the sign of sign, which must be a Fixnum, and defaults to 1.

zero (MPFR only) GMP::F.zero(sign = 1) → zero

Returns zero or -zero, an instance of GMP::F , based on the sign of sign, which
must be a Fixnum, and defaults to 1.

24

10.2 Floating-point Conversion Functions

Every method below accepts two additional parameters in addition to any required parameters.
These are rnd mode, the rounding mode to use in calculation, which defaults to GMP::GMP RNDN,
and res prec, the precision of the result, which defaults to the f.prec, the precision of f .

TONS OF MISSING DOCUMENTATION

frexp (MPFR 3.1 only) f .frexp(rnd mode = GMP RNDN, res prec=f .prec) → exp, g

Set exp and y such that 0.5 <= abs(y) < 1 and y times 2 raised to exp equals x
rounded to res prec, using rnd mode. If x is zero, then y is set to a zero of the
same sign and exp is set to 0. If x is NaN or an infinity, then y is set to the same
value and exp is undefined.

10.3 Floating-point Special Functions (MPFR Only)

Every method below accepts two additional parameters in addition to any required parameters.
These are rnd mode, the rounding mode to use in calculation, which defaults to GMP::GMP RNDN,
and res prec, the precision of the result, which defaults to the f.prec, the precision of f .

log f .log(rnd mode = GMP RNDN, res prec=f .prec) → g
log2 f .log2(rnd mode = GMP RNDN, res prec=f .prec) → g
log10 f .log10(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the natural log, log2, and log1 0 of f , respectively. Returns −Inf if f is
−0.

exp f .exp(rnd mode = GMP RNDN, res prec=f .prec) → g
exp2 f .exp2(rnd mode = GMP RNDN, res prec=f .prec) → g
exp10 f .exp10(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the exponential of f , 2 to the power of f , and 10 to the power of f ,
respectively.

cos f .cos(rnd mode = GMP RNDN, res prec=f .prec) → g
sin f .sin(rnd mode = GMP RNDN, res prec=f .prec) → g
tan f .tan(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the cosine, sine, and tangent of f , respectively.

sec f .sec(rnd mode = GMP RNDN, res prec=f .prec) → g
csc f .csc(rnd mode = GMP RNDN, res prec=f .prec) → g
cot f .cot(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the secant, cosecant, and cotangent of f , respectively.

25

acos f .acos(rnd mode = GMP RNDN, res prec=f .prec) → g
asin f .asin(rnd mode = GMP RNDN, res prec=f .prec) → g
atan f .atan(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the arc-cosine, arc-sine, and arc-tangent of f , respectively.

cosh f .cosh(rnd mode = GMP RNDN, res prec=f .prec) → g
sinh f .sinh(rnd mode = GMP RNDN, res prec=f .prec) → g
tanh f .tanh(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the hyperbolic cosine, sine, and tangent of f , respectively.

sech f .sech(rnd mode = GMP RNDN, res prec=f .prec) → g
csch f .csch(rnd mode = GMP RNDN, res prec=f .prec) → g
coth f .coth(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the hyperbolic secant, cosecant, and cotangent of f , respectively.

acosh f .acosh(rnd mode = GMP RNDN, res prec=f .prec) → g
asinh f .asinh(rnd mode = GMP RNDN, res prec=f .prec) → g
atanh f .atanh(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the hyperbolic arc-cosine, arc-sine, and arc-tangent of f , respectively.

log1p f .log1p(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the logarithm of 1 plus f .

expm1 f .expm1(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the exponential of f minus 1.

eint f .eint(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the exponential integral of f . For positive f , the exponential integral is
the sum of Euler’s constant, of the logarithm of f , and of the sum for k from 1
to infinity of f to the power k, divided by k and factorial(k). For negative f , this
method returns NaN.

li2 f .li2(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the real part of the dilogarithm of f . MPFR defines the dilogarithm as
the integral of − log(1− t)/t from 0 to f .

gamma f .gamma(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the Gamma function on f . When f is a negative integer,
this method returns NaN.

26

lngamma f .lngamma(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the logarithm of the Gamma function on f . When −2k−1 ≤
f ≤ −2k, k being a non-negative integer, this method returns NaN.

digamma f .digamma(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the Digamma (sometimes called Psi) function on f . When
f is negative, this method returns NaN.

Only available in MPFR version 3.0.0 or later.

zeta f .zeta(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the Riemann Zeta function on f .

erf f .erf(rnd mode = GMP RNDN, res prec=f .prec) → g
erfc f .erfc(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the error function on f (respectively the complementary
error function on f).

j0 f .j0(rnd mode = GMP RNDN, res prec=f .prec) → g
j1 f .j1(rnd mode = GMP RNDN, res prec=f .prec) → g
jn f .jn(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the first kind Bessel function of order 0 (respectively 1 and
n) on f . When f is NaN, this method returns NaN. When f is +Inf or -Inf, this
method returns +0. When f is zero, this method returns +Inf or -Inf, depending
on the parity and sign of n, and the sign of f .

y0 f .y0(rnd mode = GMP RNDN, res prec=f .prec) → g
y1 f .y1(rnd mode = GMP RNDN, res prec=f .prec) → g
yn f .yn(rnd mode = GMP RNDN, res prec=f .prec) → g

Returns the value of the second kind Bessel function of order 0 (respectively 1
and n) on f . When f is NaN or negative, this method returns NaN. When f is
+Inf, this method returns +0. When f is zero, this method returns +Inf or -Inf,
depending on the parity and sign of n.

27

11 Random Number Functions

11.1 Random State Initialization

new GMP::RandState.new → mersenne twister state
GMP::RandState.new(:default) → mersenne twister state
GMP::RandState(:mt) → mersenne twister random state

GMP::RandState.new(:lc 2exp, a, c, m2exp) → linear congruential state
GMP::RandState.new(:lc 2exp size, size) → linear congruential state

This method creates a new GMP::RandStateinstance. The first argument
defaults to :default (also :mt), which initializes the GMP::RandStatefor a
Mersenne Twister algorithm. No other arguments should be given if :default or
:mt is specified.

If the first argument given is :lc 2exp, then the GMP::RandStateis initial-
ized for a linear congruential algorithm. :lc 2exp must be followed with a, c, and
m2exp. The algorithm can then proceed as (X = (a ∗X + c) mod 2m2exp).

GMP::RandStatecan also be initialized for a linear congruential algorithm
with :lc 2exp size. This initializer instead takes just one argument, size. a, c,
and m2exp are then chosen from a table, with m2exp/2 > size. The maximum
size currently supported is 128.

GMP::RandState.new

GMP::RandState.new(:mt)

GMP::RandState.new(:lc 2exp, 1103515245, 12345, 15) #=> Perl’s

old rand()

GMP::RandState.new(:lc 2exp, 25 214 903 917, 11, 48) #=> drand48

11.2 Random State Seeding

seed state.seed(integer) → integer

Set an initial seed value into state. integer can be an instance of GMP::Z,
Fixnum, or Bignum.

11.3 Integer Random Numbers

urandomb state.urandomb(n) → integer

Generates a uniformly distributed random integer in the range 0 to 2n− 1, inclu-
sive.

urandomm state.urandomm(n) → integer

Generates a uniformly distributed random integer in the range 0 to n−1, inclusive.
n can be an instance of GMP::Z, Fixnum, or Bignum.

28

11.4 Floating-Point Random Numbers (MPFR only)

mpfr urandomb state.mpfr urandomb() → floating − point
state.mprf urandomb(prec) → floating − point

Generates a uniformly distributed random float in the between 0 and 1. More
precisely, the number can be seen as a float with a random non-normalized sig-
nificand and exponent 0, which is then normalized (thus if e denotes the exponent
after normalization, then the least −e significant bits of the significand are always
0).
Optionally pass prec, the precision of the resultant GMP::F number.

mpfr urandom state.mpfr urandom() → integer
state.mprf urandom(rnd mode) → floating − point

state.mprf urandom(rnd mode, prec) → floating − point

Generate a uniformly distributed random float. The floating-point number can be
seen as if a random real number is generated according to the continuous uniform
distribution on the interval [0, 1] and then rounded in the direction rnd.
Optionally pass rnd mode, a rounding mode.
Also optionally pass prec, the precision of the resultant GMP::F number.

11.5 Floating-point Miscellaneous Functions (MPFR only)

mpfr buildopt tls p GMP::F.mpfr buildopt tls p() → integer

Available only in MPFR 3.0.0 and greater.

From the MPFR Manual: Return a non-zero value if MPFR was compiled
as thread safe using compiler-level Thread Local Storage (that is, MPFR was
built with the --enable-thread-safe configure option, see INSTALL file),
return zero otherwise.

mpfr buildopt decimal p GMP::F.mpfr buildopt decimal p() → integer

Available only in MPFR 3.0.0 and greater.

From the MPFR Manual: Return a non-zero value if MPFR was com-
piled with decimal float support (that is, MPFR was built with the
--enable-decimal-float configure option), return zero otherwise.

29

12 Benchmarking

Benchmark results can be found in performance.pdf.

30

